Files
ansi_term
anyhow
atty
bitflags
bstr
byteorder
cargo_metadata
cargo_preflight
cfg_if
clap
csv
csv_core
darling
darling_core
darling_macro
dlopen
dlopen_derive
fnv
getrandom
glob
heck
ident_case
indoc
itoa
lazy_static
lerp
lerp_derive
libc
libm
maplit
memchr
num_traits
open
pest
pest_derive
pest_generator
pest_meta
ppv_lite86
preflight
preflight_macros
proc_macro2
proc_macro_error
proc_macro_error_attr
quote
rand
rand_chacha
rand_core
regex_automata
ryu
semver
semver_parser
serde
serde_derive
serde_json
smawk
strsim
structopt
structopt_derive
syn
termcolor
textwrap
timescale
timescale_macros
typenum
ucd_trie
unicode_segmentation
unicode_width
unicode_xid
unindent
uom
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! Specific heat capacity (base unit joule per kilogram kelvin, m² · s⁻² · K⁻¹).
//!
//! This quantity might be used to define the heat capacity of a material. To define heat capacity
//! of an object, use [heat capacity][hc].
//!
//! Specific heat capacity has the same kind as [temperature interval][ti], as this quantity
//! relates to change of temperature. Not of kind `TemperatureKind`, used by [thermodynamic
//! temperature][tt]. See [thermodynamic temperature][tt] for a full explanation.
//!
//! [ti]: ../temperature_interval/index.html
//! [tt]: ../thermodynamic_temperature/index.html
//! [hc]: ../heat_capacity/index.html

quantity! {
    /// Specific heat capacity (base unit joule per kilogram kelvin, m² · s⁻² · K⁻¹).
    quantity: SpecificHeatCapacity; "specific heat capacity";
    /// Dimension of specific heat capacity, L²T⁻²Th⁻¹ (base unit joule per kilogram kelvin, m² ·
    /// s⁻² · K⁻¹).
    dimension: ISQ<
        P2,     // length
        Z0,     // mass
        N2,     // time
        Z0,     // electric current
        N1,     // thermodynamic temperature
        Z0,     // amount of substance
        Z0>;    // luminous intensity
    units {
        @square_kilometer_per_second_squared_kelvin: prefix!(kilo) * prefix!(kilo); "km²/(s² · K)",
            "square kilometer per second squared kelvin",
            "square kilometers per second squared kelvin";
        /// The derived unit of specific heat capacity expressed in base units. Equivalent to
        /// J/(kg · K).
        @square_meter_per_second_squared_kelvin: prefix!(none); "m²/(s² · K)",
            "square meter per second squared kelvin", "square meters per second squared kelvin";
        @square_centimeter_per_second_squared_kelvin: prefix!(centi) * prefix!(centi);
            "cm²/(s² · K)", "square centimeter per second squared kelvin",
            "square centimeters per second squared kelvin";
        @square_millimeter_per_second_squared_kelvin: prefix!(milli) * prefix!(milli);
            "mm²/(s² · K)", "square millimeter per second squared kelvin",
            "square millimeters per second squared kelvin";
        @square_micrometer_per_second_squared_kelvin: prefix!(micro) * prefix!(micro);
            "µm²/(s² · K)", "square micrometer per second squared kelvin",
            "square micrometers per second squared kelvin";

        // Specific heat capacity is much more commonly expressed in terms of energy / (mass
        // temperature).
        @yottajoule_per_kilogram_kelvin: prefix!(yotta); "YJ/(kg · K)",
            "yottajoule per kilogram kelvin", "yottajoules per kilogram kelvin";
        @zettajoule_per_kilogram_kelvin: prefix!(zetta); "ZJ/(kg · K)",
            "zettajoule per kilogram kelvin", "zettajoules per kilogram kelvin";
        @exajoule_per_kilogram_kelvin: prefix!(exa); "EJ/(kg · K)",
            "exajoule per kilogram kelvin", "exajoules per kilogram kelvin";
        @petajoule_per_kilogram_kelvin: prefix!(peta); "PJ/(kg · K)",
            "petajoule per kilogram kelvin", "petajoules per kilogram kelvin";
        @terajoule_per_kilogram_kelvin: prefix!(tera); "TJ/(kg · K)",
            "terajoule per kilogram kelvin", "terajoules per kilogram kelvin";
        @gigajoule_per_kilogram_kelvin: prefix!(giga); "GJ/(kg · K)",
            "gigajoule per kilogram kelvin", "gigajoules per kilogram kelvin";
        @megajoule_per_kilogram_kelvin: prefix!(mega); "MJ/(kg · K)",
            "megajoule per kilogram kelvin", "megajoules per kilogram kelvin";
        @kilojoule_per_kilogram_kelvin: prefix!(kilo); "kJ/(kg · K)",
            "kilojoule per kilogram kelvin", "kilojoules per kilogram kelvin";
        @hectojoule_per_kilogram_kelvin: prefix!(hecto); "hJ/(kg · K)",
            "hectojoule per kilogram kelvin", "hectojoules per kilogram kelvin";
        @decajoule_per_kilogram_kelvin: prefix!(deca); "daJ/(kg · K)",
            "decajoule per kilogram kelvin", "decajoules per kilogram kelvin";
        /// Derived unit of specific heat capacity expressed in derived units. Equivalent to
        /// m²/(s² · K).
        @joule_per_kilogram_kelvin: prefix!(none); "J/(kg · K)",
            "joule per kilogram kelvin", "joules per kilogram kelvin";
        @decijoule_per_kilogram_kelvin: prefix!(deci); "dJ/(kg · K)",
            "decijoule per kilogram kelvin", "decijoules per kilogram kelvin";
        @centijoule_per_kilogram_kelvin: prefix!(centi); "cJ/(kg · K)",
            "centijoule per kilogram kelvin", "centijoules per kilogram kelvin";
        @millijoule_per_kilogram_kelvin: prefix!(milli); "mJ/(kg · K)",
            "millijoule per kilogram kelvin", "millijoules per kilogram kelvin";
        @microjoule_per_kilogram_kelvin: prefix!(micro); "µJ/(kg · K)",
            "microjoule per kilogram kelvin", "microjoules per kilogram kelvin";
        @nanojoule_per_kilogram_kelvin: prefix!(nano); "nJ/(kg · K)",
            "nanojoule per kilogram kelvin", "nanojoules per kilogram kelvin";
        @picojoule_per_kilogram_kelvin: prefix!(pico); "pJ/(kg · K)",
            "picojoule per kilogram kelvin", "picojoules per kilogram kelvin";
        @femtojoule_per_kilogram_kelvin: prefix!(femto); "fJ/(kg · K)",
            "femtojoule per kilogram kelvin", "femtojoules per kilogram kelvin";
        @attojoule_per_kilogram_kelvin: prefix!(atto); "aJ/(kg · K)",
            "attojoule per kilogram kelvin", "attojoules per kilogram kelvin";
        @zeptojoule_per_kilogram_kelvin: prefix!(zepto); "zJ/(kg · K)",
            "zeptojoule per kilogram kelvin", "zeptojoules per kilogram kelvin";
        @yoctojoule_per_kilogram_kelvin: prefix!(yocto); "yJ/(kg · K)",
            "yoctojoule per kilogram kelvin", "yoctojoules per kilogram kelvin";

        @kilojoule_per_kilogram_degree_celsius: 1.0_E3; "kJ/(kg · °C)",
            "kilojoule per kilogram degree celsius", "kilojoules per kilogram degree celsius";
        @kilojoule_per_gram_degree_celsius: 1.0_E6; "kJ/(g · °C)",
            "kilojoule per gram degree celsius", "kilojoules per gram degree celsius";
        @joule_per_kilogram_degree_celsius: 1.0_E0; "J/(kg · °C)",
            "joule per kilogram degree celsius", "joules per kilogram degree celsius";
        @joule_per_gram_degree_celsius: 1.0_E3; "J/(g · °C)",
            "joule per gram degree celsius", "joules per gram degree celsius";
        @millijoule_per_kilogram_degree_celsius: 1.0_E-3; "mJ/(kg · °C)",
            "millijoule per kilogram degree celsius", "millijoules per kilogram degree celsius";
        @millijoule_per_gram_degree_celsius: 1.0_E0; "mJ/(g · °C)",
            "millijoule per gram degree celsius", "millijoules per gram degree celsius";

        @btu_per_ounce_degree_fahrenheit: 6.694_399_058_608_398_E4; "Btu/(oz · °F)",
            "British thermal unit per ounce degree Fahrenheit",
            "British thermal units per ounce degree Fahrenheit";
        @btu_it_per_ounce_degree_fahrenheit: 6.698_881_674_187_076_E4; "Btu (IT)/(oz · °F)",
            "British thermal unit (IT) per ounce degree Fahrenheit",
            "British thermal units (IT) per ounce degree Fahrenheit";
        @btu_per_pound_degree_fahrenheit: 4.183_998_673_699_118_E3; "Btu/(lb · °F)",
            "British thermal unit per pound degree Fahrenheit",
            "British thermal units per pound degree Fahrenheit";
        @btu_it_per_pound_degree_fahrenheit: 4.186_800_307_941_667_E3; "Btu (IT)/(lb · °F)",
            "British thermal unit (IT) per pound degree Fahrenheit",
            "British thermal units (IT) per pound degree Fahrenheit";
        @btu_per_ton_degree_fahrenheit: 1.897_829_999_999_999_999_E0; "Btu/(t · °F)",
            "British thermal unit per ton degree Fahrenheit",
            "British thermal units per ton degree Fahrenheit";
        @btu_it_per_ton_degree_fahrenheit: 1.899_100_799_999_999_999_E0; "Btu (IT)/(t · °F)",
            "British thermal unit (IT) per ton degree Fahrenheit",
            "British thermal units (IT) per ton degree Fahrenheit";
    }
}

#[cfg(test)]
mod tests {
    storage_types! {
        use crate::num::One;
        use crate::si::energy as e;
        use crate::si::length as l;
        use crate::si::mass as m;
        use crate::si::quantities::*;
        use crate::si::specific_heat_capacity as shc;
        use crate::si::temperature_interval as ti;
        use crate::si::time as t;
        use crate::tests::Test;

        #[test]
        fn check_dimension() {
            let _: SpecificHeatCapacity<V> = Length::new::<l::meter>(V::one())
                * Length::new::<l::meter>(V::one())
                / (Time::new::<t::second>(V::one())
                    * Time::new::<t::second>(V::one())
                    * TemperatureInterval::new::<ti::kelvin>(V::one()));
        }

        #[test]
        fn check_base_units() {
            test::<l::kilometer, t::second, ti::kelvin,
                shc::square_kilometer_per_second_squared_kelvin>();
            test::<l::meter, t::second, ti::kelvin,
                shc::square_meter_per_second_squared_kelvin>();
            test::<l::centimeter, t::second, ti::kelvin,
                shc::square_centimeter_per_second_squared_kelvin>();
            test::<l::millimeter, t::second, ti::kelvin,
                shc::square_millimeter_per_second_squared_kelvin>();
            test::<l::micrometer, t::second, ti::kelvin,
                shc::square_micrometer_per_second_squared_kelvin>();

            fn test<
                L: l::Conversion<V>,
                T: t::Conversion<V>,
                TI: ti::Conversion<V>,
                SHC: shc::Conversion<V>>()
            {
                Test::assert_approx_eq(&SpecificHeatCapacity::new::<SHC>(V::one()),
                    &((Length::new::<L>(V::one()) * Length::new::<L>(V::one()))
                        / (Time::new::<T>(V::one())
                            * Time::new::<T>(V::one())
                            * TemperatureInterval::new::<TI>(V::one()))));
            }
        }

        #[test]
        fn check_energy_per_mass_ti_shc_units() {
            test::<e::yottajoule, m::kilogram, ti::kelvin, shc::yottajoule_per_kilogram_kelvin>();
            test::<e::zettajoule, m::kilogram, ti::kelvin, shc::zettajoule_per_kilogram_kelvin>();
            test::<e::exajoule, m::kilogram, ti::kelvin, shc::exajoule_per_kilogram_kelvin>();
            test::<e::petajoule, m::kilogram, ti::kelvin, shc::petajoule_per_kilogram_kelvin>();
            test::<e::terajoule, m::kilogram, ti::kelvin, shc::terajoule_per_kilogram_kelvin>();
            test::<e::gigajoule, m::kilogram, ti::kelvin, shc::gigajoule_per_kilogram_kelvin>();
            test::<e::megajoule, m::kilogram, ti::kelvin, shc::megajoule_per_kilogram_kelvin>();
            test::<e::kilojoule, m::kilogram, ti::kelvin, shc::kilojoule_per_kilogram_kelvin>();
            test::<e::hectojoule, m::kilogram, ti::kelvin, shc::hectojoule_per_kilogram_kelvin>();
            test::<e::decajoule, m::kilogram, ti::kelvin, shc::decajoule_per_kilogram_kelvin>();
            test::<e::joule, m::kilogram, ti::kelvin, shc::joule_per_kilogram_kelvin>();
            test::<e::decijoule, m::kilogram, ti::kelvin, shc::decijoule_per_kilogram_kelvin>();
            test::<e::centijoule, m::kilogram, ti::kelvin, shc::centijoule_per_kilogram_kelvin>();
            test::<e::millijoule, m::kilogram, ti::kelvin, shc::millijoule_per_kilogram_kelvin>();
            test::<e::microjoule, m::kilogram, ti::kelvin, shc::microjoule_per_kilogram_kelvin>();
            test::<e::nanojoule, m::kilogram, ti::kelvin, shc::nanojoule_per_kilogram_kelvin>();
            test::<e::picojoule, m::kilogram, ti::kelvin, shc::picojoule_per_kilogram_kelvin>();
            test::<e::femtojoule, m::kilogram, ti::kelvin, shc::femtojoule_per_kilogram_kelvin>();
            test::<e::attojoule, m::kilogram, ti::kelvin, shc::attojoule_per_kilogram_kelvin>();
            test::<e::zeptojoule, m::kilogram, ti::kelvin, shc::zeptojoule_per_kilogram_kelvin>();
            test::<e::yoctojoule, m::kilogram, ti::kelvin, shc::yoctojoule_per_kilogram_kelvin>();

            test::<e::kilojoule, m::kilogram, ti::degree_celsius,
                shc::kilojoule_per_kilogram_degree_celsius>();
            test::<e::kilojoule, m::gram, ti::degree_celsius,
                shc::kilojoule_per_gram_degree_celsius>();
            test::<e::joule, m::kilogram, ti::degree_celsius,
                shc::joule_per_kilogram_degree_celsius>();
            test::<e::joule, m::gram, ti::degree_celsius, shc::joule_per_gram_degree_celsius>();
            test::<e::millijoule, m::kilogram, ti::degree_celsius,
                shc::millijoule_per_kilogram_degree_celsius>();
            test::<e::millijoule, m::gram, ti::degree_celsius,
                shc::millijoule_per_gram_degree_celsius>();

            test::<e::btu, m::ounce, ti::degree_fahrenheit, shc::btu_per_ounce_degree_fahrenheit>();
            test::<e::btu_it, m::ounce, ti::degree_fahrenheit,
                shc::btu_it_per_ounce_degree_fahrenheit>();
            test::<e::btu, m::pound, ti::degree_fahrenheit, shc::btu_per_pound_degree_fahrenheit>();
            test::<e::btu_it, m::pound, ti::degree_fahrenheit,
                shc::btu_it_per_pound_degree_fahrenheit>();
            test::<e::btu, m::ton, ti::degree_fahrenheit, shc::btu_per_ton_degree_fahrenheit>();
            test::<e::btu_it, m::ton, ti::degree_fahrenheit,
                shc::btu_it_per_ton_degree_fahrenheit>();

            fn test<
                E: e::Conversion<V>,
                M: m::Conversion<V>,
                TI: ti::Conversion<V>,
                SHC: shc::Conversion<V>>()
            {
                Test::assert_approx_eq(&SpecificHeatCapacity::new::<SHC>(V::one()),
                    &(Energy::new::<E>(V::one())
                        / (Mass::new::<M>(V::one()) * TemperatureInterval::new::<TI>(V::one()))));
            }
        }
    }
}