Files
ansi_term
anyhow
atty
bitflags
bstr
byteorder
cargo_metadata
cargo_preflight
cfg_if
clap
csv
csv_core
darling
darling_core
darling_macro
dlopen
dlopen_derive
fnv
getrandom
glob
heck
ident_case
indoc
itoa
lazy_static
lerp
lerp_derive
libc
libm
maplit
memchr
num_traits
open
pest
pest_derive
pest_generator
pest_meta
ppv_lite86
preflight
preflight_macros
proc_macro2
proc_macro_error
proc_macro_error_attr
quote
rand
rand_chacha
rand_core
regex_automata
ryu
semver
semver_parser
serde
serde_derive
serde_json
smawk
strsim
structopt
structopt_derive
syn
termcolor
textwrap
timescale
timescale_macros
typenum
ucd_trie
unicode_segmentation
unicode_width
unicode_xid
unindent
uom
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//! Ratio (dimensionless quantity).

#[cfg(feature = "std")]
use super::angle::{Angle, radian};

quantity! {
    /// Ratio (dimensionless quantity).
    quantity: Ratio; "ratio";
    /// Dimension of ratio, 1 (dimensionless).
    dimension: ISQ<
        Z0,     // length
        Z0,     // mass
        Z0,     // time
        Z0,     // electric current
        Z0,     // thermodynamic temperature
        Z0,     // amount of substance
        Z0>;    // luminous intensity
    units {
        @ratio: 1.0; "", "", "";
        @part_per_hundred: 1.0_E-2; "parts per hundred", "part per hundred", "parts per hundred";
        @percent: 1.0_E-2; "%", "percent", "percent";
        @part_per_thousand: 1.0_E-3; "parts per thousand", "part per thousand",
            "parts per thousand";
        @per_mille: 1.0_E-3; "‰", "per mille", "per mille";
        @part_per_ten_thousand: 1.0_E-4; "parts per ten thousand", "part per then thousand",
            "parts per ten thousand"; // ‱, doesn't display properly.
        @basis_point: 1.0_E-4; "bp", "basis point", "basis points";
        @part_per_million: 1.0_E-6; "ppm", "part per million", "parts per million";
        @part_per_billion: 1.0_E-9; "ppb", "part per billion", "parts per billion";
        @part_per_trillion: 1.0_E-12; "ppt", "part per trillion", "parts per trillion";
        @part_per_quadrillion: 1.0_E-15; "ppq", "part per quadrillion", "parts per quadrillion";
    }
}

/// Implementation of various stdlib inverse trigonometric functions
#[cfg(feature = "std")]
impl<U, V> Ratio<U, V>
where
    U: crate::si::Units<V> + ?Sized,
    V: crate::num::Float + crate::Conversion<V>,
    radian: crate::Conversion<V, T = V::T>,
{
    /// Computes the value of the inverse cosine of the ratio.
    #[inline(always)]
    pub fn acos(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.acos())
    }

    /// Computes the value of the inverse hyperbolic cosine of the ratio.
    #[inline(always)]
    pub fn acosh(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.acosh())
    }

    /// Computes the value of the inverse sine of the ratio.
    #[inline(always)]
    pub fn asin(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.asin())
    }

    /// Computes the value of the inverse hyperbolic sine of the ratio.
    #[inline(always)]
    pub fn asinh(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.asinh())
    }

    /// Computes the value of the inverse tangent of the ratio.
    #[inline(always)]
    pub fn atan(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.atan())
    }

    /// Computes the value of the inverse hyperbolic tangent of the ratio.
    #[inline(always)]
    pub fn atanh(self) -> Angle<U, V> {
        Angle::new::<radian>(self.value.atanh())
    }
}

mod convert {
    use super::*;

    impl<U, V> From<V> for Ratio<U, V>
    where
        U: crate::si::Units<V> + ?Sized,
        V: crate::num::Num + crate::Conversion<V>,
    {
        fn from(t: V) -> Self {
            Ratio {
                dimension: crate::lib::marker::PhantomData,
                units: crate::lib::marker::PhantomData,
                value: t,
            }
        }
    }

    storage_types! {
        use super::*;

        impl<U> From<Ratio<U, V>> for V
        where
            U: crate::si::Units<V> + ?Sized,
            V: crate::num::Num + crate::Conversion<V>,
        {
            fn from(t: Ratio<U, V>) -> Self {
                t.value
            }
        }
    }
}

#[cfg(test)]
mod tests {
    storage_types! {
        use crate::num::{FromPrimitive, One};
        use crate::si::quantities::*;
        use crate::si::ratio as r;
        use crate::tests::Test;

        #[test]
        fn from() {
            let r1: Ratio<V> = Ratio::<V>::from(V::one());
            let r2: Ratio<V> = V::one().into();
            let _: V = V::from(r1);
            let _: V = r2.into();
        }

        #[test]
        fn check_units() {
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E2).unwrap()),
                &Ratio::new::<r::part_per_hundred>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E2).unwrap()),
                &Ratio::new::<r::percent>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E3).unwrap()),
                &Ratio::new::<r::part_per_thousand>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E3).unwrap()),
                &Ratio::new::<r::per_mille>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E4).unwrap()),
                &Ratio::new::<r::part_per_ten_thousand>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E4).unwrap()),
                &Ratio::new::<r::basis_point>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E6).unwrap()),
                &Ratio::new::<r::part_per_million>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one() / V::from_f64(1.0_E9).unwrap()),
                &Ratio::new::<r::part_per_billion>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one()
                    / V::from_f64(1.0_E12).unwrap()),
                &Ratio::new::<r::part_per_trillion>(V::one()));
            Test::assert_eq(&Ratio::new::<r::ratio>(V::one()
                    / V::from_f64(1.0_E15).unwrap()),
                &Ratio::new::<r::part_per_quadrillion>(V::one()));
        }
    }

    #[cfg(feature = "std")]
    mod inv_trig {
        storage_types! {
            types: Float;

            use crate::si::angle as a;
            use crate::si::quantities::*;
            use crate::tests::Test;

            fn test_nan_or_eq(yl: V, yr: V) -> bool {
                (yl.is_nan() && yr.is_nan()) || Test::eq(&yl, &yr)
            }

            quickcheck! {
                fn acos(x: V) -> bool {
                    test_nan_or_eq(x.acos(), Ratio::from(x).acos().get::<a::radian>())
                }

                fn acosh(x: V) -> bool {
                    test_nan_or_eq(x.acosh(), Ratio::from(x).acosh().get::<a::radian>())
                }

                fn asin(x: V) -> bool {
                    test_nan_or_eq(x.asin(), Ratio::from(x).asin().get::<a::radian>())
                }

                fn asinh(x: V) -> bool {
                    test_nan_or_eq(x.asinh(), Ratio::from(x).asinh().get::<a::radian>())
                }

                fn atan(x: V) -> bool {
                    test_nan_or_eq(x.atan(), Ratio::from(x).atan().get::<a::radian>())
                }

                fn atanh(x: V) -> bool {
                    test_nan_or_eq(x.atanh(), Ratio::from(x).atanh().get::<a::radian>())
                }
            }
        }
    }
}