1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
//! Linear interpolation and extrapolation traits. #![doc(html_root_url = "https://coriolinus.github.io/lerp-rs/")] use num_traits::{Float, One, Zero}; use std::iter; use std::iter::{Chain, Once, Skip}; use std::ops::{Add, Mul}; /// Types which are amenable to linear interpolation and extrapolation. /// /// This is mainly intended to be useful for complex /// numbers, vectors, and other types which may be multiplied by a /// scalar while retaining their own type. /// /// It's automatically implemented /// for all `T: Add<Output = T> + Mul<F, Output = T>`. pub trait Lerp<F> { /// Interpolate and extrapolate between `self` and `other` using `t` as the parameter. /// /// At `t == 0.0`, the result is equal to `self`. /// At `t == 1.0`, the result is equal to `other`. /// At all other points, the result is a mix of `self` and `other`, proportional to `t`. /// /// `t` is unbounded, so extrapolation and negative interpolation are no problem. /// /// # Examples /// /// Basic lerping on floating points: /// /// ``` /// use lerp::Lerp; /// /// let four_32 = 3.0_f32.lerp(5.0, 0.5); /// assert_eq!(four_32, 4.0); /// let four_64 = 3.0_f64.lerp(5.0, 0.5); /// assert_eq!(four_64, 4.0); /// ``` /// /// Extrapolation: /// /// ``` /// # use lerp::Lerp; /// assert_eq!(3.0.lerp(4.0, 2.0), 5.0); /// ``` /// /// Negative extrapolation: /// /// ``` /// # use lerp::Lerp; /// assert_eq!(3.0.lerp(4.0, -1.0), 2.0); /// ``` /// /// Reverse interpolation: /// /// ``` /// # use lerp::Lerp; /// assert_eq!(5.0.lerp(3.0, 0.5), 4.0); /// ``` fn lerp(self, other: Self, t: F) -> Self; /// Interpolate between `self` and `other` precisely per the `lerp` function, bounding `t` /// in the inclusive range [0..1]. /// /// # Examples /// /// Bounding on numbers greater than one: /// /// ``` /// # use lerp::Lerp; /// assert_eq!(3.0.lerp_bounded(4.0, 2.0), 4.0); /// ``` /// /// Bounding on numbers less than zero: /// /// ``` /// # use lerp::Lerp; /// assert_eq!(3.0.lerp_bounded(5.0, -2.0), 3.0); /// ``` fn lerp_bounded(self, other: Self, t: F) -> Self where Self: Sized, F: PartialOrd + Copy + Zero + One, { let t = match t { t if t < F::zero() => F::zero(), t if t > F::one() => F::one(), t => t, }; self.lerp(other, t) } } /// Types which can construct a lerping iterator from one point to another /// over a set number of steps. /// /// This is automatically implemented for all `T: Lerp<f64> + Sized`. pub trait LerpIter { /// Create an iterator which lerps from `self` to `other`. /// /// The iterator is half-open: it includes `self`, but not `other` /// /// # Example /// /// ``` /// use lerp::LerpIter; /// /// // lerp between 3 and 5, collecting two items /// let items: Vec<_> = 3.0_f64.lerp_iter(5.0, 4).collect(); /// assert_eq!(vec![3.0, 3.5, 4.0, 4.5], items); /// ``` fn lerp_iter(self, other: Self, steps: usize) -> LerpIterator<Self> where Self: Sized; /// Create an iterator which lerps from `self` to `other`. /// /// The iterator is closed: it returns both `self` and `other`. /// /// Note when `steps == 1`, `other` is returned instead of `self`. /// /// # Example /// /// ``` /// use lerp::LerpIter; /// /// assert_eq!(vec![3.0, 5.0], 3.0_f64.lerp_iter_closed(5.0, 2).collect::<Vec<f64>>()); /// ``` fn lerp_iter_closed( self, other: Self, steps: usize, ) -> Skip<Chain<LerpIterator<Self>, Once<Self>>> where Self: Copy, LerpIterator<Self>: Iterator<Item = Self>, { // reduce the number of times we consume the sub-iterator, // because we unconditionally add an element to the end. if steps == 0 { LerpIterator::new(self, other, steps) .chain(iter::once(other)) .skip(1) } else { LerpIterator::new(self, other, steps - 1) .chain(iter::once(other)) .skip(0) } } } /// Default, generic implementation of Lerp. /// /// Note that due to the implementation details, LerpIterator is only actually /// an iterator for those types `T` which fit the constraint `Mul<f64, Output = T>`. /// This means that though you can use the `lerp` method on f32s, it will not work to /// iterate over the results of calling `lerp_iter` on an f32. Instead, up-cast /// your f32 as an f64 before calling: `(example_f32 as f64).lerp_iter(...)`. /// /// This default implementation is mainly intended to be useful for complex /// numbers, vectors, and other types which may be multiplied by a /// scalar while retaining their own type. impl<T, F> Lerp<F> for T where T: Add<Output = T> + Mul<F, Output = T>, F: Float, { fn lerp(self, other: T, t: F) -> T { self * (F::one() - t) + other * t } } impl<T> LerpIter for T where T: Lerp<f64> + Sized, { fn lerp_iter(self, other: T, steps: usize) -> LerpIterator<T> { LerpIterator::new(self, other, steps) } } /// An iterator across a range defined by its endpoints and the number of intermediate steps. pub struct LerpIterator<T> { begin: T, end: T, steps: usize, current_step: usize, } impl<T> LerpIterator<T> { fn new(begin: T, end: T, steps: usize) -> LerpIterator<T> { LerpIterator { begin, end, steps, current_step: 0, } } } impl<T> Iterator for LerpIterator<T> where T: Lerp<f64> + Copy, { type Item = T; fn next(&mut self) -> Option<T> { if self.current_step >= self.steps { None } else { let t = self.current_step as f64 / self.steps as f64; self.current_step += 1; Some(self.begin.lerp(self.end, t)) } } fn size_hint(&self) -> (usize, Option<usize>) { let remaining = if self.current_step >= self.steps { 0 } else { self.steps - self.current_step }; (remaining, Some(remaining)) } } impl<T> ExactSizeIterator for LerpIterator<T> where T: Lerp<f64> + Copy {} #[cfg(feature = "derive")] #[allow(unused_imports)] #[macro_use] extern crate lerp_derive; #[cfg(feature = "derive")] #[doc(hidden)] pub use lerp_derive::*; #[cfg(all(test, feature = "derive"))] mod test_derive { use super::Lerp; use std::fmt::Debug; // Helper when working with floats to "round" them, so we can compare them better fn round(d: &dyn Debug) -> String { format!("{:.1?}", d) } #[test] fn tuple() { #[derive(PartialEq, Debug, Lerp)] struct Data(f64, f64); assert_eq!( round(&Data(0.0, 1.0).lerp(Data(1.0, 0.0), 0.5)), round(&Data(0.5, 0.5)) ); assert_eq!( round(&Data(0.0, 1.0).lerp(Data(1.0, 0.0), 0.9)), round(&Data(0.9, 0.1)) ); } #[test] fn named() { #[derive(PartialEq, Debug, Lerp)] struct Data { a: f32, b: f32, }; assert_eq!( round(&Data { a: 0.0, b: 1.0 }.lerp(Data { a: 1.0, b: 0.0 }, 0.5)), round(&Data { a: 0.5, b: 0.5 }) ); assert_eq!( round(&Data { a: 0.0, b: 1.0 }.lerp(Data { a: 1.0, b: 0.0 }, 0.9)), round(&Data { a: 0.9, b: 0.1 }) ); } #[test] fn manual() { #[derive(PartialEq, Debug)] struct Data { a: f64, b: f64, }; impl Lerp<f64> for Data { fn lerp(self, other: Self, t: f64) -> Self { Self { a: self.a.lerp(other.a, t), b: self.b.lerp(other.b, t), } } } assert_eq!( round(&Data { a: 0.0, b: 1.0 }.lerp(Data { a: 1.0, b: 0.0 }, 0.5)), round(&Data { a: 0.5, b: 0.5 }) ); assert_eq!( round(&Data { a: 0.0, b: 1.0 }.lerp(Data { a: 1.0, b: 0.0 }, 0.9)), round(&Data { a: 0.9, b: 0.1 }) ); } }